

Page 1 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

Automation Smells

Top Level Automation
Improvements for

Non-Automation Experts

By Richard Edwards – Head of Automation at Shift Left Group

Why you need this article in your life
As with many things in the world, you often can smell a problem before you find it and functional test
automation is no exception. The trick is recognising the difference in warning between the rancorous
stench of rotting meat and the tantalising aroma of excellent cheese.

The purpose of this article is to help you identify bad automation smells in your delivery lifecycle
without the need for a nose that has been honed from years of technical automation work.

After 15 years in technical test delivery, working with dozens of clients and even more projects; I’ve
compiled a list of smells that I seek out when supporting clients which can highlight low levels of
adherence to automation best practice. By either asking direct questions or keeping a nose out for
suspicious odours you can quickly identify any automation inefficiencies or impediments and
recognise the need for improvement. These automation smells apply to both classic waterfall and
modern Agile delivery methodologies. The content and supporting stories are not theory, they are
summaries of my first-hand experiences.

The overall goal is to stimulate continuous improvement and unleash the full potential of automated
testing. We do not want to create a deodorant to mask odours but rather identify and remove the
source of the nauseating hum.

Why you need good automation in your life
Automation is an investment in time, money and resources and is key to supporting an efficient
software delivery process.

While the end product is handled by everyone, it’s typical that the automation is mostly managed by
the Quality Assurance team as few others have the required skillset or are empowered to develop it. I
would say we’re all responsible for quality and don’t let automation best practice become a blind spot
in your IT project lifecycle.

Page 2 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

It stinks that we have no idea what
our automation has actually tested

The notable odours:
• Key people have no idea what runs in the automated pack
• People feel automation is running the wrong tests

Question: What are you testing?

It's easy to get carried away and forget that automation is for regression tests. We don't need to
automate all tests and we don't need to exhaustively test the application for each release. Especially
for automation at the GUI level, fewer tests mean less maintenance and less technical weight carried
forward in each release. A good regression pack is the right size to mitigate the risk of regression
issues. Someone is paying for the automation to happen, so, it’s important for that someone to get a
positive feeling that automation is delivering value.

To know what you’re testing, detailed traceability helps. All tests should have a test basis and
knowing that information source helps translate the technical delivery to the business need.

In this situation a relatively easy approach is to have a good set of reports and to seek feedback from
the stakeholders. Sharing what you’ve automated as you go and a future plan (if you have one) helps
prevent conflicts down the line. Outline the rules for selecting regression tests and allow the team to
share the task of identify regression candidates.

Story: I did an automation review for a client. An external third party was
doing the development and all test testing - including GUI automation.
I was asked to get involved because the management didn't trust the
automation. They felt it was a waste of time and effort, as there were
frequently uncaught regression defects creeping in across releases.
Upon a detailed review one of the problems was transparency as reporting
and tracking of automated assets was almost non-existent. The third party
managed it all internally and the client management team had no visibility of
what had been automated or what the future steps were.

Moral: Clear reporting was a core recommendation of the automation review. The
aim is to keep detailed traceability of tests and be as transparent as possible. When
you know what tests you will automate and why, share the list and allow input and
adjustments – this is more than just a test activity. It’s for the client, the BAs, the
business SMEs, the developers and anyone else involved as they will all have an
understanding of what is critical and which parts of the application are likely to be
risky.

Page 3 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

It stinks that our automation takes
forever to run

The notable odours:
• Automation takes a long time to run - too long for the delivery methodology
• The automation pack has far too many tests
• There are automation execution bottlenecks

Question: Why does automation take so long to run?

One of automation's great benefits is fast feedback – and fast is a relative term. Days isn't fast but it
can be acceptable especially if it's still faster than manual testing and doesn’t have the reliance on
manual resource. The real reek here is if automation is too slow for the delivery approach.

Test teams and automation are often left with a “do-what-you-can” situation to get tests running which
often results in non-optimum solutions. Automation is an investment and it’s logical to keep that
investment going and not stop halfway through. As the automation return on investment is delivered
this creates its own quantifiable business case for more automation and more support for automation
requirements.

Story 1: I was visiting a client and someone mentioned the automated test
pack of about fifty scripts was taking 3 days to run. A little digging later and
the challenge they faced was they needed overnight batch jobs to mature the
test data between the days. The client believed the tests were only valid if
the overnight batch job executed on its own.
The core recommendation was to separate the purpose of the tests. Initially,
there was a bit of education that the overnight batch job is just a batch job on
a timer. It can be kicked off at any time to progress the system data with the
same functional result and automating this would bring down the execution
time to a few hours instead of the 3 days. The testers (and automation)
would just need access to the system and server which managed the job.
Following that, if the batch job’s execution schedule was classed as critical
regression coverage, it has value creating new tests specifically for it. This
provides significantly more accuracy and result clarity than waiting overnight
for it to run and seeing what has happened the next day.

Moral: Don’t stop the investment in the automation. Just because there is
an impediment that prevents automation running – remove it or create a way
around it. Support the QA team in managing aspects of the integrated test
environment to provide the greatest efficiency.

Page 4 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

Story 2: I was part of a delivery team for a client. The automation took
approximately 8 hours to execute.
In principle this was fast enough - it was capable of overnight execution.
However, with an adjustment to the source test data and little upgrade, it was
possible to parallelise the tests and bring the run time down to 2 hours, which
enabled within-working-day feedback. In this instance, it was relatively easy
as it was an open source solution - however, even if it was licensed software
there would have been positive cost-benefit result for buying more
automation test tool licenses.

Moral: Don't feel limited by what you have. If there are speed improvements vs
cost - create a business case for it. Overnight automation is great, but a two
hour feedback loop is better.

It stinks that maintenance of our

automation takes so long and costs
so much

The notable odours:
• Automation rarely passes first time
• Application changes frequently breaks the automation scripts
• There is a need to spend a lot of time and effort on automation

maintenance

Question: Why does the automation maintenance take so long?

This is one of the biggest criticisms of automation: A minor application change can result in massive
amounts of automation maintenance. Senior stakeholders just see lots of failing tests and their
automation resources doing maintenance instead of delivering new value.

More often than not, this is reactive maintenance, where the application has changed and test code is
subject to unplanned changed.

There are technical answers to this one around automation code and maintenance efficiency, but
we're not doing technical in this article.

The softer alternative answer is to consider that quality is everyone's responsibility. Even in Agile
cross-skilled delivery it's easy to silo people where the developers develop and the testers test. From
an automation point of view, if there are unexpected changes that happen in a project (for example:
changing of GUI IDs, or API data structure) don't immediately react and accept the changes in order
to make the tests pass again. Instead, talk about it. Validate if these sorts of changes are expected
within the team and see if it's worth the automation maintenance effort vs the actual change. A five
minute development task can mitigate hours of automation maintenance.

If you have a lot of recurring maintenance pain, ensure your application is testable.

Page 5 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

Story: At a client there were several Agile delivery teams and before I
started, one team already had a shaky reputation. A recent story I had heard
from the QA team was that one of the front end developers refactored an
important page without a supporting story card. The unit tests and API tests
in the CI pipes passed and it was pushed to the test environments. A couple
of hours later a fair portion of the selenium GUI tests were no longer working.
The QA team dropped what they were doing and spent hours fixing and
rerunning the automation pack. It's commendable that the QA team reacted
to verify the quality of the application and adjusted course accordingly, but
this was substantial unexpected and (arguably) unneeded test effort.

Moral: Test maintenance will always need to be done – but in some situations
best intentions from the QA resources to just keep tests running isn't always the
best solution. It’s worth a quick check with the team if the change is expected
and still worth the maintenance effort.

It stinks that tests sometimes fail the
first time and we rerun them over and

over until they pass

The notable odours:
• The automation doesn't pass first time
• There is time spent rerunning tests
• Automated tests run in CI pipes then are rerun on local machines

Question: How often do the automation tests fail? - And do you know why?

I like this one as a definition of madness is doing the same thing and expecting a different result!

An automated test has run and failed. You glance at the error but decided to just press “run” again.

This is quite a common issue to the point where a number of testing frameworks have rerun-test-on-
fail options.

I admit that I've done this at times and will continue to do so in the right situation. As a tester you have
to complete the execution to get a deliverable over the line. You know the test works, running it again
takes a few minutes and it'll probably pass. Perhaps the test machine hiccupped, there was a network
issue or there was some other non-repeatable server issue. It's more efficient to press run and wait a
few minutes then it is to spend an hour or two debugging.

While the creation of new work has the highest value there is a tipping point that means it is time to
clear some technical debt in the test suite. Rerunning automation is potentially a short term plaster on
bigger cracks. Good automation just runs.

If you catch that you’re frequently re-running tests on fail, you need to fix the underlying problem. It's
worth the investment to make sure you have a well synchronised automation pack and detailed

Page 6 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

auditing capabilities. Having good reporting/tracking at the test level and consistent low level reporting
lets you identify flaky tests and make dramatic improvements.

Story: I joined a client team who were executing GUI automation in a CI pipe
with around a 40% pass rate and it had been at that level for a while. It was
attracting adverse attention from managers who only looked at the high level
stats.
A little bit of investigation determined that there were a number of technical
issues that made the reliability of the cloud CI build machine very poor - but
the application was seemingly fine. You couldn’t deliver software with so
many failing tests so the automation was run in the CI pipe then the QA
resource(s) were re-running everything locally again for a regression run on
every sprint. Essentially, the CI pipe results were running but being ignored -
therefore the history of runs and audit trail was non-existent.
Over a few weeks we brought in some new software to standardise and
stabilise the execution - but that wasn't enough. When the number of test
failures went down to manageable numbers, we made a point of investigating
and fixing every automated test fail.
The end result was 98% pass rate on the CI pipe - the final 2% we had
defects logged. There were intermittent application issues
around asynchronous calls that everyone assumed to be automation
synchronisation issues - until we looked into them in detail. We could only
look into them because there were a handful of failing tests per run.

Moral: Find time to invest in good automation maintenance and good
synchronisation. Rerun on fail is OK to achieve deliverables but still investigate
any intermittent issues. A healthy test pack runs first time and provides results
you can trust.

It stinks that only one person knows
how to run our automation

The notable odours:
• A specific resource needs to be available to run the automation
• Automation is configured to execute on someone's account
• Changing target test environments (or other configuration)

requires a code-level change
Question: Who can run the automation?

Automation just needs to run and test execution should be the simplest part of the life-cycle.

As much as possible, automation execution shouldn't have intrinsic/complex knowledge on how to
execute the test pack and therefore shouldn’t rely on a specific resource.

Automation doesn't stop at the test script. It's good to abstract as much complication as possible out
of the execution, have automatic reporting and allow anyone to initiate execution with non-technical
steps.

Page 7 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

Story: At a client site I was the only Automator, I was this resource limitation
as no one else knew the tools involved. Knowing that I was on a time limited
contract it was important for my professional reputation to ensure that once I
left, people would be able to execute the automation and report the results. I
created additional scripts to replace what I knew in terms of setting the target
environment, resetting machines and reporting.

Moral: Automate everything in the execution process. Make execution of the
automation as complex as one button (or no buttons if there's a CI trigger or a
scheduled timer). If there is a test management tool (or equivalent) have it
manage the key aspects of the execution (e.g. target browser, test environment,
etc.)

It stinks that automation needs

manual intervention

The notable odours:
• Automation has several packs that are kicked off with a manual air

gap between them
• There are manual phases to the tests
• Manual interference is required to make the tests run

Question: Does the automation need any manual help? – is test data set up manually? Is there a
manual clean down between test runs?

Watch out for manual steps in the automation flow.

Automation doesn't stop at the test script. It's generally good practice to automate all parts of the
process, so once it’s running no further input is needed. The automation utopia in execution is to aim
for the tests to set up their own data, execute, clean up and report without the need for any
interference.

Story 1: This story is not one I was present for but from a friend early in my
career that stays with me to this day. Our consultancy was tasked with
automating a call centre application. Part of the test required the customer to
answer the phone so the application would capture that the phone call was
successfully connected. The automation engineer programmed in his desk
phone number - as the test ran, he would pick up and put down the phone
every time it rang. It's a logical solution to an application but it's not
automated.
The low cost solution was to allow the dialling application to make an
incomplete call then update the database value to be a completed call. We
were OK to make the direct database modification as the purpose of the test
was not to make calls but rather for the integrated system to detect the
customer had been contacted. The incomplete call created the relevant

Page 8 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

records and the automation just toggled the call-success flag. This removed
the need for a tester and a desk phone.

Moral: Find the automated solution to application problems.

Story 2: I was part of a team scoping out some new automation work for a
client. Throughout our engagement we found that the System Integrator had
started automation but never finished. It was a commercial off the shelf
system with a lot of integration points, however, the environment where they
developed the automation didn't have the additional systems. Their
automation would stop every time it reached any integration point and when
the project reached the right environment, they would do those off-system
steps manually. They had essentially baked in a large amount of execution
complexity, framework knowledge and tool skillsets for a little time saving.
The solution was for the client to ensure sufficient environment stubs in the
short term followed by access to the full application landscape in the long
term to deliver the highest end to end value.

Moral: It's not automated if you're doing manual steps.

It stinks that we have a lot more

than one automation tool

The notable odours:
• There are multiple frameworks, multiple languages and/or multiple

tools in play
• Job adverts list a few different test tools
• Specific resources are needed for specific projects

Page 9 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

Question: What automation tools do we use?

Using a single tool aligned to the development language (where possible) is generally good
automation practice. This has a number of benefits, such as minimising license costs, skill
requirements, handover time, training effort as well as increasing the ability for cross project support
for resources. That is what I stick to and when speaking to a client and it is still my recommendation.

However, I have experienced a notable caveat on this automation smell. There are some cases
where multiple automation tools can be suitable. I worked with a substantial client who had hundreds
of applications delivered by several third party vendors/teams across multiple concurrent projects over
many years. Whilst the client’s view was that "doing automation" was key, communication over such a
landscape and resource availability with the same skillset was limited so they used different
technologies to develop and different automation tools to facilitate their key requirements. Their
automation return on investment was smaller, but it was still a positive value.

Story 1: During an automation health check, the third party system integrator
had two versions of the same automation tool on site. The first (earlier)
version was integrated and limited by the test management tool version. At
some point they required a later version to support a new application under
test, but this couldn't integrate with the test management tool. As such they
built and operated two independent automation frameworks with a whole
host of differences for execution and reporting.

Moral: Try and stick to one solution wherever possible. If the test management
tool is the problem, change it. If it can't be changed, find another way. For
example, create your own integration using a single framework. Try to avoid
doubling the cost and complication.

Story 2: I joined an existing delivery team and the client direction was to
make sure the teams invested in automation as they progressed through the
project. The intention is that when you pick up the project again, you have a
working regression pack before you make changes.
However, whether it was deliberate or not, they didn't go as far to say what
tools had to be used. As a result, at least 4 different automation tools were in
play - one of them was selenium and even this had C# and Java variants.
As they were buying tools from project budgets, getting a few thousand for
test automation tool licenses or borrowing existing stock was not a major
hurdle for the client.
On the one hand this is costly and inefficient as there are excessive licenses,
there's a lot of tools to install and manage. On the other hand, they still had
automation. The scripts were written with automation in mind, the automation
was done well and the test data was correctly identified. The solution in
place was working for the client but they were continually impacted with
automation skillset constraints. It was only when a major modernisation
program was kicked off that all these piece-meal automation tools were
standardised to a consistent delivery approach.

Moral: Delivering good automation is important - more important than the
tool selection. It's more costly to have a variety of tools but once automation
is done correctly it can be migrated or resources can learn the required new
skills. However, this must not be a free for all – there must be strategic
control of the tools to prevent excessive overheads.

Page 10 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

It stinks that we often see Automators
watching the automation run

The notable odours:
• Key resource are sat at their desk watching the automation run
• Automation is running on scripting machines

Question: Why are the team watching the automation?

A couple of reasons for this one.

The first has a quick and simple resolution when you catch it. It's easy to fall into a BAU-status-quo:

• You start automation from scratch on your machine.
• There are only a few tests so when you press execute it takes a few minutes and you really

need to babysit it at first to make sure it behaves as expected.
• Then you add more and more tests until the pack is takes hours to run.
• Eventually you lose your entire working day every time the pack needs to run.

The second reason is that automation is running on scripting machines.

Typically, a scripting machine (the Automator’s local desktop) has extra configuration, extra software
and generally extra effort applied to it. All this can influence the application or the execution of the
test.

When it comes to test execution you want it to run on "standard kit" where any configuration is
handled by the automation code itself with no manual setup required. This allows automation to just
run, creating a lower maintenance and more scalable solution.

Story: I was visiting an existing client site. On my rounds I stopped to speak
to one of our consultants and at that point he was executing the regression
pack. He hadn't created it but was the current custodian of it. It was running
on his client workstation and as it was thick client GUI automation it blocked
him from all client work. The pack had to be run in office hours as the
machine needed to be unlocked. Pass and fail results were only delivered at
the end of the run at the end of the day. In this instance, all it took was to flag
to the consultant what he was doing and he recognised the impact. The next
day he had a second machine which would remotely execute the tests and
returned a day a week of his working time to the client.

Moral: Aim to execute formal tests runs on controlled machines, i.e.
machines that are not used for scripting. This can be resolved by having
more physical machines, virtual machines or executing the test pack from a
CI pipe on build agents - anything as long as you can keep working while the
automation is running.

Page 11 of 11

 Strictly Private and Confidential Making Business and Technology
Better © Shift Left Group Limited

A Final Note

Having automation that works is great. I would say that’s a good start but we should always
strive for continual improvement.

When you have automation it’s good to think that:

• Automation needs to test the right things:

o It needs to report the right information to the team and
the output needs to contain trustworthy results.

o Someone is paying for the automation. If they don’t feel
warm and fuzzy or hear bad things about the
automation/project they might reassess.

• Automation needs to just run:

o Consider that for every application change, automation
needs to run. If it doesn't just run there is something
there that is causing a waste of time and money.

o If it needs manual intervention then, by definition, it's not
automated.

o It needs to run on remote machines with all configuration
managed by the execution process.

o You need the right tools for the job and avoid
diversifying in automation tools where possible.

• Automation needs to run well:

o If it's a lot of effort to run (for example it falls over or
gives poor results) people hate it. If people hate it they'll
find reasons not to run it or cut corners when doing it.

o If someone can suggest improvements that can be
made to the automation - make a case for them. Seek
budget or time to make those key changes.

o Automation maintenance should be proactive and
agreed within the team where possible.

The best practice test automation solution varies from client to client. With the points in this article you
don’t need to be an automation expert, you don’t need to be technical and you don’t need to review
any code to help the team achieve their version of best practice. By catching a hint of the odours or
innocently asking some probing questions you can shine a light on any problems or impediments and
the resolutions can become logical. That might be all that’s needed to get them fixed by the right
people and allow everyone to enjoy the sweet smell of success.

If you know you have complex automation smells and cannot discern the source of the odours then
please contact info@shiftleft.today or call Alan on +44 (0)7469 702042 and we can help.

